How to load the first amino acid onto Wang resin

While resins loaded with the natural 20 amino acids are commercially available these days, there may be times when loading the first amino acid onto the resin in house may be necessary.  And unlike loading the first amino acid onto amide-leaving resins, the first coupling reaction for C-terminal acids can be chemically more challenging.

There are several protocols published both in the literature as well as in technical notes from many peptide reagent and instrument suppliers, but they typically occur at room temperature over extended periods of time (3-24 hours and repeated).  In today’s post, I’ll evaluate several conditions suitable for efficiently loading the first amino acid onto Wang-type resin. Continue reading How to load the first amino acid onto Wang resin

How long should I let my cleavage reaction stir at room temperature?

As the rules for cell permeability continue to be elucidated, peptides are increasingly being used to deliver either themselves or cargo to the cell’s interior.  One thing is clear, increasing the overall cationic charge of the peptide enhances it’s delivery to not only the cytoplasm, but also the nucleus or other subcellular compartments.  To achieve the positive charge, large numbers of arginine residues are most often incorporated into the peptide sequence.

This begs the question though, should I change my cleavage protocol?  In today’s post, I’ll evaluate several lengths of time used to cleave and fully deprotect an Arg-rich peptide sequence. Continue reading How long should I let my cleavage reaction stir at room temperature?

How does flow rate affect my peptide purification efficiency when using a small pore stationary phase?

In a previous post, I evaluated how flow rate can impact my purification efficiency using flash chromatography.  I noticed though, at high flow rates a significantly later elution time for my peptide.  I hypothesized that the increased pressure was driving the compound further into the pores, increasing the overall interaction with the stationary phase and causing the increased retention.  We know that the particle size and particle pore size impact resolution and purification efficiency, so how does flow rate play a role with a different stationary phase?

In today’s post I’ll evaluate several flow rates using a reversed phase stationary phase material with slightly larger diameter particles that possess significantly smaller pores.  The smaller pores should limit the access of the peptides to the stationary phase and negatively impact the purification.

Continue reading How does flow rate affect my peptide purification efficiency when using a small pore stationary phase?

Has my peptide undergone an aspartimide rearrangement?

Side reactions.  Words that cause a little shiver to run down every chemists’ spine.  As peptide chemists, we worry about both chemical side reactions like diketopiperazine or aspartimide rearrangements, and secondary structure formation as causes for failed peptide syntheses.  But how do you know what to look for?  What is a susceptible sequence and how can you confirm if one of these structural rearrangements has occurred?

In today’s post, I’ll discuss a couple strategies that have been published that illustrate how to identify if an aspartimide rearrangement has in fact occurred during your peptide synthesis. Continue reading Has my peptide undergone an aspartimide rearrangement?